EEG-based analysis of human driving performance in turning left and right using Hopfield neural network

نویسندگان

  • Mitra Taghizadeh-Sarabi
  • Kavous Salehzadeh Niksirat
  • Sohrab Khanmohammadi
  • Mohammadali Nazari
چکیده

In this article a quantitative analysis was devised assessing driver's cognition responses by exploring the neurobiological information underlying electroencephalographic (EEG) brain signals in a left and right turning experiment on simulator environment. Driving brain signals have been collected by a 19-channel electroencephalogram recording system. The driving pathway has been selected with no obstacles, a set of indicators are used to inform the subjects when they had to turn left or right by means of keyboard left and right arrows. Subsequently in order to remove artifacts, preprocessing is performed on data to achieve high accuracy. Features of signals are extracted by using Fast Fourier Transform (FFT). Absolute power of FFT is used as a basic feature. Scalar Feature selection method is applied to reduce feature dimension. Thereafter dimension-reduced features are fed to Hopfield Neural Network (HNN) recognizing different brain potentials stimulated by turning to left and right. The performances of HNN are evaluated by considering five conditions; before feature extraction, after feature extraction, before reduction of features, after analyzing reduced features and finally subject-wise Hopfield performances respectively. An increase occurred in each level and continued until it has reached its highest 97.6% of accuracy on last condition.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Classification of Right/Left Hand Motor Imagery by Effective Connectivity Based on Transfer Entropy in EEG Signal

The right and left hand Motor Imagery (MI) analysis based on the electroencephalogram (EEG) signal can directly link the central nervous system to a computer or a device. This study aims to identify a set of robust and nonlinear effective brain connectivity features quantified by transfer entropy (TE) to characterize the relationship between brain regions from EEG signals and create a hierarchi...

متن کامل

Neural Localization of Brand Social Responsibility Using EEG

Introduction: The purpose of this study was to investigate the neural effects of brand social responsibility (BSR) on consumer behavior. In the version of third marketing, consideration of the human spirit and its responsibility as a competitive strategy has been proposed. Materials and Methods: The investigation method was an exploratory-laboratory. Electrocardiographic instruments were used t...

متن کامل

Neural Network Performance Analysis for Real Time Hand Gesture Tracking Based on Hu Moment and Hybrid Features

This paper presents a comparison study between the multilayer perceptron (MLP) and radial basis function (RBF) neural networks with supervised learning and back propagation algorithm to track hand gestures. Both networks have two output classes which are hand and face. Skin is detected by a regional based algorithm in the image, and then networks are applied on video sequences frame by frame in...

متن کامل

Neural Network Modelling of Optimal Robot Movement Using Branch and Bound Tree

In this paper a discrete competitive neural network is introduced to calculate the optimal robot arm movements for processing a considered commitment of tasks, using the branch and bound methodology. A special method based on the branch and bound methodology, modified with a travelling path for adapting in the neural network, is introduced. The main neural network of the system consists of diff...

متن کامل

Predictions of Tool Wear in Hard Turning of AISI4140 Steel through Artificial Neural Network, Fuzzy Logic and Regression Models

The tool wear is an unavoidable phenomenon when using coated carbide tools during hard turning of hardened steels. This   work focuses on the prediction of tool wear using regression analysis and artificial neural network (ANN).The work piece taken into consideration is AISI4140 steel hardened to 47 HRC. The models are developed from the results of experiments, which are carried out based on De...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 2  شماره 

صفحات  -

تاریخ انتشار 2013